Evaluation of Performance Characteristics of Polynomial based and Lattice based NRTU Cryptosystem
نویسندگان
چکیده
In order to achieve the security for the e-business application, generally, the organizations follow the cryptographic methods. The two widely accepted and used cryptographic methods are symmetric and asymmetric. The DES ideally belongs to the category of symmetric key cryptosystem and RSA, NTRU[3] belongs to the category of asymmetric key cryptosystem. NTRU (Nth degree truncated polynomial ring units) is a collection of mathematical algorithms based on manipulating lists of very small integers. NTRU is the first secure public key cryptosystem not based on factorization or discrete logarithmic problems. The keys are generated by having small potent polynomials from the ring of truncated polynomials. NTRU can also be implemented using matrices instead of polynomials [4, 5]. We proceed with the encryption and decryption of the plain text required by implementing the algorithms of both the approaches of NTRU cryptosystems. It is already shown that the matrix approach is algorithmically better than the polynomial approach of NTRU cryptosystem [5]. We propose and test both the methods for variable sized text files, using polynomial and matrix cryptosystems. This paper presents the comparative study of polynomial NTRU and matrix NTRU algorithms for variable sized text files as input. The final results were observed using Mathematica5.1, analyzed and compared so as to identify which method is appropriate to the business needs.
منابع مشابه
EEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations
GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...
متن کاملQTRU: quaternionic version of the NTRU public-key cryptosystems
In this paper we will construct a lattice-based public-key cryptosystem using non-commutative quaternion algebra, and since its lattice does not fully fit within Circular and Convolutional Modular Lattice (CCML), we prove it is arguably more secure than the existing lattice-based cryptosystems such as NTRU. As in NTRU, the proposed public-key cryptosystem relies for its inherent securi...
متن کاملQTRU: A Lattice Attack Resistant Version of NTRU
We propose QTRU, a probabilistic and multi-dimensional public key cryptosystem based on the NTRU public key cryptosystem using quaternion algebra. QTRU encrypts four data vectors in each encryption session and the only other major difference between NTRU and QTRU is that the underlying algebraic structure has been changed to a non-commutative algebraic structure. As a result, QTRU inherits the ...
متن کاملOn the Design of Hardware Building Blocks for Modern Lattice-Based Encryption Schemes
We present both a hardware and a software implementation variant of the learning with errors (LWE) based cryptosystem presented by Lindner and Peikert. This work helps in assessing the practicality of lattice-based encryption. For the software implementation, we give a comparison between a matrix and polynomial based variant of the LWE scheme. This module includes multiplication in polynomial r...
متن کاملA New Ring-Based SPHF and PAKE Protocol On Ideal Lattices
emph{ Smooth Projective Hash Functions } ( SPHFs ) as a specific pattern of zero knowledge proof system are fundamental tools to build many efficient cryptographic schemes and protocols. As an application of SPHFs, emph { Password - Based Authenticated Key Exchange } ( PAKE ) protocol is well-studied area in the last few years. In 2009, Katz and Vaikuntanathan described the first lattice-based ...
متن کامل